M.Sc.(Biochemistry), P.U. Chemistry plays a central and important role in all competitive examinations as well as in day to day life. For last so many years, I have constantly been in touch with students, guiding them in Chemistry and looking into their difficulties for them to succeed in their board as well as competitive examinations JEE(Mains & Advance) | NEET. I have felt a need for a good coaching centre to fulfil the requirements of students. Students need a highly experienced and qualified faculty in chemistry, who can guide them well, clear their doubts, provide them the effective & tricky notes, and make them do much needed practice. More importantly they should also be provided Classroom Monitoring, Periodical & Surprise Tests to guide them in the proper direction. I realize that, it is very important to diagnose the basic weaknesses and problems of students not succeeding in JEE(Mains & Advance) | NEET and Board exams. In fact, as question patterns are changing, now they need to have a different approach for these Examinations. At RANJAN SINGH CHEMISTRY CLASSES, we have our own way to prepare students for Competitive Examinations as well as Board Examination at a time so they can crack the entrance exam like JEE(Mains & Advance) and NEET as well as 12th Board simultaneously. We act as a medium to provide the simplest, easiest and a comfortable way to make students achieve their target. At RANJAN SINGH CHEMISTRY CLASSES(RSCC), we guide our students with the best motivational classes so weak students are also able to believe that, They can do it. When you join RANJAN SINGH CHEMISTRY CLASSES you become a part of the powerful force which propels you towards your goal and if you get a position among the rankers with my excellent guidance, I will think that our efforts have borne fruits. M.Sc(Biochemistry), P.U. **Ex-faculty: Narayana IIT Academy** **&** Goal Institute Ranjan Singh # **INTRODUCTION:** Compounds derived from hydrocarbons by replacement of one or more H-atoms by corresponding no. of halogen atoms are known as halogen derivatives. #### Classification: On the basis of nature of hydrocarbon from which they are obtained, hydrocarbon derivatives can be classified as: - (a) Alkyl halides: Halogen derivative of alkanes. - (b) Alkenyl halides: Halogen derivative of alkenes. - (c) Alkynyl halides: Halogen derivative of alkynes - (d) Aryl halides: Halogen derivative of arenes (aromatic) #### HALOALKANES OR ALKYL HALIDE Halogen derivatives of alkanes are formed by substitution of one or more hydrogen atoms of an alkane by halogen (F, Cl, Br or I). (Halogen atom is normally represented by X) Halogen derivatives of Alkanes are divided into mono di, tri, etc. Substitution products according to the number of halogen atoms in the molecule. #### **MONOHALO ALKANES** - These are halogen derivatives of alkanes having general formula $C_nH_{2n+1}X$. where X = F, Cl, Br and I. - Monohalo alkanes are of three types : - (a) **Primary alkyl halides** in which halo group is present on primary carbon atom, i.e. $R CH_2 X$ - (b) Secondary alkyl halides in which halo group is present on secondary carbon atom, (c) **Tertiary alkyl halides** in which halo group is present on tertiary carbon atom, i.e. R - C - R' ## Methods of Preparation of Alkyl Halide: (a) By Halogenation of Alkanes Halogenation of alkanes takes place by free radical mechanism. $$R-H + X-X \xrightarrow{h_0} R-X + H-X$$ $$R-H + CI-SO_2-CI \xrightarrow{Peroxide} R-CI + SO_2 + H-CI$$ (b) By Hydrohalogenation of Alkenes Alkyl halides are formed by addition of hydrogen halide on alkenes according to **Markownikoff's** rule. $$R-CH=CH_2+H-Br \xrightarrow{Peroxide} R-CH_2-CH_2-Br$$ (c) By halogen exchange in alkyl Halides : By Silver Halide: This reaction is called Swart reaction. $$R - I + Ag - F$$ $\xrightarrow{\text{Ethylene glycol}} R - F + Ag - I$ By Sodium or Potassium Halide: This reaction is called Finkelstein reaction. $$R - CI + KI \xrightarrow{Acetone} R - I + KCI$$ (d) From Alkanols By Conc. HCI: This is called Grove's method. $$R-OH + H-CI \xrightarrow{Anhyd. ZnCl_2} R-CI + H-OH$$ By Red Phosphorus and Bromine: $$2P + 3Br_2 \longrightarrow 2PBr_3$$ $3R-OH + PBr_3 \longrightarrow 3R-Br + H_3PO_3$ #### By Red Phosphorus and Iodine: $$2P + 3I_2 \longrightarrow 2PI_3$$ $3R-OH + PI_3 \longrightarrow 3R-I + H_3PO_3$ By Phosphorus pentachloride: By Phosphorus trichloride: By Thionyl chloride: The above reaction is performed in the presence of pyridine. Called Darzens reaction. From KBr and Conc. H₃SO₄: $$2R-OH + H_2SO_4 + 2KBr \longrightarrow 2R-Br + K_2SO_4 + 2H_2O_4$$ From KI and H₃PO₄: (e) From Alkanoic Acids: $$R-COOAg + Br-Br \xrightarrow{CCl_4} R-Br + CO_2 + AgBr$$ It is called Hunsdiecker reaction. (f) From Alkylamines: Alkyl chlorides are formed by the reaction of Tilden's reagent or Nitrosyl chloride (NOCI) on alkylamines. $$R + N + H_2O$$ $$+ CI + N = O$$ $$CI + N + H_2O$$ #### **Physical Properties** - ◆ CH₃F, CH₃Cl, CH₃Br, C₂H₅F and C₂H₅Cl are found in gaseous state at room temperature. - Alkyl halides are normally sweet-smelling gases and liquids, whereas odourless in solid state. - ♦ All alkyl halides are insoluble in water. - Boiling points of alkyl halides change in the following order. - (i) On having same alkyl group $$R-I > R-Br > R-CI > R-F$$ (i) On having same halogen atom ### **CHEMICAL PROPERTIES** Nucleophilic substitution reaction [S_N]: Bond polarity : $$\overset{\delta_+}{R} \xrightarrow{\delta_-} \overset{\delta_-}{X}$$ [–I effect] Order of dipole moment [CH₃X]: $${ m CH_3-\!Cl} \ [1.86D] > { m CH_3-\!Br} \ [1.7D] > { m CH_3-\!I} \ [1.64D]$$ In this reaction reactivity order is as follows: $$R-I > R-Br > R-Cl > R-F$$ #### **R—X REACTION** | Reagent | Product | | | | | | | | | | |---------------------------------|-------------------|--|--|--|--|--|--|--|--|--| | Na/dry ether | R–R | | | | | | | | | | | KOH (aq.) | ROH | | | | | | | | | | | Ag ₂ O (moist) | ROH | | | | | | | | | | | Nal | RIN | | | | | | | | | | | NaOR | ROR | | | | | | | | | | | R'COOAg | R'COOR | | | | | | | | | | | Ag ₂ O (dry) | ROR | | | | | | | | | | | KCN | RCN | | | | | | | | | | | AgCN | RN ≓C | | | | | | | | | | | R'C ≡ CNa | $R'C \equiv CR$ | | | | | | | | | | | KNO ₂ | RONO | | | | | | | | | | | AgNO ₂ | RNO ₂ | | | | | | | | | | | Na ₂ SO ₃ | RSO₃Na | | | | | | | | | | | NaSR' | RSR' | | | | | | | | | | | Na ₂ S | R_2S | | | | | | | | | | | KSH | RSH | | | | | | | | | | | NH ₃ | RNH ₂ | | | | | | | | | | | RNH ₂ | R ₂ NH | | | | | | | | | | | R ₂ NH | R ₃ N | | | | | | | | | | | R ₃ N | R₄N+X⁻ | | | | | | | | | | # **β-Elimination Reaction**: Dehydrohalogenation : Alkyl halides give β -elimination reaction in the presence of strong base such as alc. KOH/ Δ , alc. NaOH/ Δ , RONa/Ethanol, NaH/ Δ , NaNH₂/ Δ $$\begin{array}{c|c} X & & \\ & | & \\ R-CH_2-CH-R' & \xrightarrow{Base/\Delta} & R-CH=CH-R' \end{array}$$ #### **Oxidation reaction:** - Only primary and secondary alkyl halides undergo oxidation. Tertiary alkyl halide does not undergo oxidation. - Primary alkyl halides give aldehyde where as secondary alkyl halides give ketone in this reaction. - Oxidising agent is either : - (a) Dimethyl sulphoxide or - (b) Reaction with (CH₂)₆N₄ followed by hydrolysis. - Reactivity ∞ number of α -hydrogens. $$R - CH_2 - X \xrightarrow{DMSO \text{ or } \atop \text{(i) } (CH_2)_6N_4 \atop \text{(ii) } H_2O/H^{\oplus}} R - C - F$$ $$\begin{array}{c} X \\ | \\ R-CH-R \end{array} \xrightarrow[(i) (CH_2)_6N_4 \\ (ii) H_2O/H^{\oplus} \end{array} R-C-F$$ $$C_6H_5CH_2 - X \xrightarrow{(CH_2)_6N_4} C_6H_5 - C - H_5$$ **Note**: (i) Oxidation of Benzyl halides by (CH₂)₆N₄ is known as **sommelet aldehyde synthesis**. (ii) Oxidation of alkyl halide with DMSO is known as **swern oxidation**. #### Reaction with Metals By Wutrz Reaction : An alkane having even number of carbon atoms. This is called Wurtz synthesis or Wurtz Reaction. $$R-X + 2Na + X-R \xrightarrow{Dry ether} R-R + 2NaX$$ Alkane having odd number of carbon atoms can be obtained by mixed Wurtz synthesis. $$R-X + X-R' \xrightarrow{Dry \text{ ether}} R-R + R-R' + R'-R'$$ $$\begin{array}{c} \text{CH}_3\text{--}\text{I} \\ + \text{CH}_3\text{CH}_2\text{--}\text{I} \end{array} \xrightarrow{\begin{array}{c} \text{Dry ether} \\ \text{Na} \end{array}} \begin{array}{c} \text{CH}_3\text{--}\text{CH}_3 \\ + \text{CH}_3\text{--}\text{CH}_2\text{CH}_3 \\ + \text{CH}_3\text{--}\text{CH}_2\text{--}\text{CH}_2\text{CH}_3 \end{array}$$ #### Synthesis of Grignard's Reagents $$R-X + Mg \xrightarrow{Dry \text{ ether}} R-MgX$$ #### Synthesis of Frankland's Reagents $$2R-X + 2Zn \xrightarrow{Dry \text{ ether}} R-Zn-R + ZnX_2$$ #### Synthesis of Tetraalkyllead Tetraethyllead and tetramethyllead are high quality antiknock compounds. #### HALOARENS OR HALOBENZENE OR ARYL HALIDE If halogen atom is directly attached to the benzene ring, then compound is called as Haloarene. # ${\bf Chlorobenzene,\,C_6H_5Cl}$ #### **Methods of Preparation:** #### Chlorination of Benzene: Chlorobenzene is obtained on reacting benzene with chlorine in the presene of a halogen carrier. Lewis acids (AlCl₃, FeBr₃, BF₃, etc) some elements (iron powder, iodine, etc.) or some tertiary amine bases (pyridine) can be used as halogen carriers. $$+ Cl_2 \xrightarrow{\Delta} + HC$$ Bromobenzene is obtained if bromine is used in place of chlorine in the above reaction. #### Dehydroxylative Chlorination of Phenol: Chlorobenzene is formed on reacting phenol with phosphorus pentachloride. Yields of chlorobenzene are low due to formation of triphenyl phosphate $(C_6H_5)_3PO_4$ as the major product. $$OH \qquad CI \qquad + PCI_3 + HCI$$ $$OH \qquad CI \qquad -O$$ $$OH \qquad CI \qquad P=O \qquad + 3HCI$$ $$(C_6H_5)_3PO_4 \text{ or }$$ $$Triphenyl phosphate$$ ## Sandmeyer's reaction (Deaminative Chlorination of Aniline): Chlorobenzene can be obtained by Sandmeyer's reaction (Cuprous chloride, in the presence of Cu_2Cl_2) or Gatermann reaction (in the presence of copper powder) of the benzenediazonium chloride salt obtained by diazotisation (reaction of aqueous NaNO₂ and aqueous HCl at 0° C) of aniline. For the synthesis of flurobenzene, benzenediazonium fluoroborate is heated. This is called Balz–Schiemann reaction. $$+ HBF_{4} \xrightarrow{-HCI} \stackrel{\oplus \Theta}{\longrightarrow} \stackrel{\wedge}{N_{2}BF_{4}} \xrightarrow{-N_{2}, -BF_{3}}$$ #### **Decarboxylation of Chlorobenzoic Acids:** Dry distillation of o-, m- or p-chlorobenzoic acid with soda lime gives chlorobenzene by decarboxylation. #### Dehydroxylation of Chlorophenols: On dry distillation of o-, m- or p-chlorophenol with zinc dust, chlorobenzene is obtained by dehydroxylation. #### Decarboxylative Bromination of Benzoic Acid: For the preparation of bromobenzene, silver salt of benzoic acid is heated with bromine in CCl₄ solution. This is called **Borodine–Hunsdiecker reaction**. $$+ Br_2 \xrightarrow{CCl_4} + CO_2 + AgBr$$ Flurobenzene, chlorobenzene and iodobenzene cannot be prepared by the above method. #### **Raschig Process:** Manufacture of chlorobenzene on large scale is carried out by **Raschig process**. In this method, the mixture of benzene vapour. HCl gas and the oxygen (air) is passed over heated copper-iron catalyst or CuCl₂ catalyst with pressure at 250°C. $$+ O_2 + HCI \xrightarrow{\text{Pressure 250}^{\circ}} + H_2O$$ ## **Physical Properties:** Chlorobenzene is a colourless, volatile, inflammable, liquid (boiling point = 132°C) having faint smell resembling almonds. It is a little bit poisonous (less than benzene), insoluble in water and soluble in organic solvents. #### Reactions: [A] Reactions due to chlorine atom. [B] Reactions due to Benzene ring. #### **Reactions Due to Chlorine Atom:** The reactivity of chlorobenzene increases when -M or -I effect causing groups are bonded at ortho or para positions of chlorobenzene. These groups decrease pi electron density on the ring and then nucleophile can attack easily on chloro benzene. Thus $$\bigcap^{Cl} NO_2$$ is more reactive than \bigcap^{Cl} towards nucleophilic substitution. Nucleophilic substitution in chlorobenzene takes place by elimination-addition mechanism. In this reaction **Benzyne** is formed as an intermediate. #### Reduction or Dechlorination: Benzene is formed on reduction of chlorobenzene by nickel-aluminium alloy in the presence of small amounts of a base. $$+ H_2 \xrightarrow{\text{Ni/Al}} + \text{HCl}$$ #### **Dechlorinative Amination:** On heating with ammonia in the presence of cuprous oxide, aniline is formed. $$2 \bigcirc + NH_3 + Cu_2O \xrightarrow{\Delta} 2 \bigcirc + H_2O + Cu_2Cl_2$$ #### **Dechlorinative Hydroxylation:** [a] By Dow process: Phenol is formed on heating chlorobenzene with caustic soda (NaOH) or wasing soda (Na $_2$ CO $_3$) solution at a high temperature (300 $^{\circ}$ C) under pressure in the presence of a copper salt. This method is used for the manufacture of phenol on large scale and is known as **Dow process**. + NaOH $$\xrightarrow{300^{\circ}}$$ + NaCl **[b] By steam**: On passing a mixture of chlorobenzene and steam through heated silica at 500°C, phenol is formed. $$\begin{array}{c} \downarrow \\ + \text{H}_2\text{O} \xrightarrow{500^{\circ}} \\ \hline \end{array} + \text{HCI}$$ #### **Reaction with Metals** #### Fitting Reaction: Ar-I + 2Na + I-Ar $$\xrightarrow{\text{Dry ether}}$$ Ar-Ar + 2Nal C_6H_5 -I + 2Na + I- C_6H_5 $\xrightarrow{\text{Dry ether}}$ C_6H_5 -C $_6H_5$ + 2Nal #### **Wurtz-Fitting Reaction:** $$R-I + 2Na + I-Ar \xrightarrow{Dry \text{ ether}} R-Ar + 2NaI$$ $$CH_3-I + 2Na + I-C_6H_5 \xrightarrow{Dry \text{ ether}} CH_3-C_6H_5 + 2NaI$$ #### With Magnesium Metal: In order to obtain high yields of phenylmagnesium halide, iodobenzene (or bromobenzene) is reacted with magnesium in dry and pure ether. Flurobenzene and chlorobenzene react very slowly. Therfore, they are practically not suitable for preparing a Grignard's reagent. #### Reactions Due to Benzene Ring: #### [i] Electrophilic Substitution or S_F Reactions : #### Halogenation: $$+ Cl_2 \xrightarrow{\text{Iron powder. } \Delta} + Cl_2 \xrightarrow{\text{O-Dichlorobenzene}} + Cl_2 \xrightarrow{\text{CI}} + Cl_2 \xrightarrow{\text{CI}} + Cl_2 \xrightarrow{\text{CI}} + Cl_2 \xrightarrow{\text{Dichlorobenzene}} + Cl_2 \xrightarrow{\text{CI}} C$$ #### Sulphonation: $$\begin{array}{c} CI \\ -H_2O \end{array} \xrightarrow{COnc. H_2SO_4. \Delta}$$ $$\begin{array}{c} CI \\ SO_3H \end{array}$$ o- and p-chlorobenzensulphonic acids #### Nitration: $$\begin{array}{c} \text{Cl} \\ \text{Conc. HNO}_3 + \\ \text{Conc. H}_2 \text{SO}_4, \Delta \\ -\text{H}_2 \text{O} \end{array} \right) \\ \text{o- and p-Chloronitrobenzenes}$$ #### [ii] Condensation Reaction: #### **Bimolecular Condensation wtih Chloral:** On heating mixture of chlorobenzene and chloral hydrate in the presence of small amount of concentrated sulphuric acid, p, p'-dichlorodiphenyltrichloroethane, whose abbreviated name is **D.D.T.** It is a strong germicide and its IUPAC name is 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane. In the above reaction o, p'-dichloro isomer is also formed in minor amount (about 25%) as a by-product. $$CI \longrightarrow H$$ $$+ O = CH - CCI_3 \longrightarrow H_2SO_4$$ $$-H_2O$$ $$CI \longrightarrow CH - CCI_3$$ $$CI \longrightarrow CH - CCI_3$$ $$O,p' - Dichlorodiphenyltrichloroethane$$ #### Uses: [1] In the manufacutre of strong germicide, D.D.T. [2] In the manufacture of many medicines and compounds (phenol, aniline, alkylbenzenes, dichlorobenzenes, phenylmagnesium halides, etc.) and as intermediate in several reactions. [3] As a solvent. # **TOPIC WISE MCQS** # Methods of preparation of alkyl halide - The formation of an alkyl halide by reaction of hydrogen halide on an unsymmetrical alkene is an example of - - (A) A nucleophilic addition reaction - (B) An electrophilic addition reaction - (C) A free radical reaction - (D) An elimination reaction - 2. When propylene reacts with HBr in presence of peroxide, the product formed is - - (A) n-Propyl alcohol - (B) Propylene peroxide - (C) n-Propyl bromide - (D) 1,3 Dibromo propene - 3. In reaction $$C_2H_5OH + HX \xrightarrow{ZnX_2} C_2H_5X + H_2O$$ the order of reactivity of HX is - - (A) HBr > HI > HCI - (B) HI > HCI > HBr - (C) HCl > HBr > HI - (D) HI > HBr > HCI - 4. Which of the following leads to the formation of an alkyl halide - - (A) C_2H_5OH Red $P+Br_2$ - (B) C₂H₅OH SOCI₂ - (C) C₂H₅OH KBr+Conc,H₂SO₄ - (D) All - Which halide/ halides not prepared by Darzen reaction - - (A) R- CI - (B) RBr - (C) R I - (D) (B) & (C) both - 6. Which reaction is termed as Darzen's Reaction- - (A) ROH + HCI - (B) ROH + PCl_5 - (C) ROH + SOCI₂ - (D) ROH + PCl_3 - 7. The reaction of silver carboxylates with bromine dissolved in carbon tetrachloride is called - - (A) Hofmann reaction - (B) Borodine reaction - (C) Borodine Hunsdiecker reaction - (D) Hypobromide reaction - 8. In the Hunsdiecker reaction - - (A) Number of carbon atoms decrease - (B) Number of carbon atoms increase - (C) Number of carbon atoms remain same - (D) None of the above - 9. $C_2H_5CI + AgF \longrightarrow C_2H_5F + AgCI$ The above reaction is called - - (A) Hunsdiecker - (B) Swart - (C) Strecker - (D) Wurtz ## Physical properties of alkyl halide - 10. Which of the following statement is correct - - (A) Decreasing order of density of alkyl halides is RI > RBr > RCI > RF - (B) The stability order of alkyl halides is RF > RCl > RBr >RI - (C) Among isomeric alkyl halides the decrease in boiling point 1° > 2° > 3° - (D) All are correct - 11. Which statement is not correct - - (A) Polyhalides are lighter than water - (B) Halo alkanes have higher boiling points as compared to those of corresponding alkanes - (C) Halides are soluble in organic solvents - (D) None - 12. An alkyl halide is insoluble in water because- - (A) Alkyl halide is non polar & H₂O is polar - (B) Both are polar - (C) Alkyl halide does not form hydrogen bond with water - (D) Alkyl halide has halogen atom in it. - 13. The correct order of polarity of alkyl halides is: - (A) RI > RBr < RCl > RF - (B) RF > RCI > RBr > RI - (C) RCI > RF > RBr > RI - (D) None - **14.** Which chloride is the most reactive towards aqueous NaOH in - - (A) Methyl chloride - (B) Chlorobenzene - (C) Vinyl chloride - (D) Benzyl chloride - **15.** The S_N^2 reactivity order for halides :- - (A) R F > R Cl > R Br > R I - (B) R I > R Br > R Cl > R F - (C) R Br > R I > R CI > R F - (D) R CI > R Br > R F > R I - **16.** In S_N^{-1} reaction, the first step involves the formation of : - - (A) Free radical - (B) Carbanion - (C) Carbocation - (D) Final product - **17.** The rate law for the reaction, RCI + Na (aq.) \rightarrow ROH + NaCl is given by, rate = K_1 [RCI]. The rate of the reaction will be : - - (A) Doubled on doubling the concentration of sodium hydroxide - (B) Halved on reducing the concentration of alkyl halide to half - (C) Decreased on increasing the temperature of the reaction - (D) Unaffected by increasing the temperature of the reaction - 18. Chlorobenzene is - - (A) More reactive than ethyl bromide - (B) More reactive than isopropyl chloride - (C) As reactive as methyl chloride - (D) Less reactive than benzyl chloride #### Chemical reaction of alkyl halide - **19.** When an alkyl halide reacts with an alkoxide, the product is - - (A) Ether - (B) Ester - (C) Hydrocarbon - (D) Alcohol 20. $$CH_3 - CH - CH - CH_3 \xrightarrow{SN^1, C_2H_5ONa} Ether$$ CH_3 Br Ether is - $$\begin{array}{c} {\rm OC_2H_5} \\ {\rm I} \\ {\rm (A)} \ \ {\rm CH_3-C-CH_2-CH_3} \\ {\rm CH_3} \end{array}$$ - (C) Both correct - (D) None is correct - 21. 2-Bromobutane on heating with alcoholic alkali forms - - (A) α Butylene only - (B) β Butylene only - (C) 20% of β -Butylene+ 80% of α -Butylene - (D) 80% β -Butylene + 20% α -Butylene - 22. An organic compound on treatment with alcoholic KOH gives a hydrocarbon of a molecular fromula C₄H₈. Oxidation of the hydrocarbon gives propionic acid and CO₂. The organic compound should be - - (A) C₂H₅ CH₂ CH₂CI - (B) CH₃ CH₂ CH CH₂ CI - (C) CH₃ CH CH CH₃ CI - (D) CH₃ CH CH₂Cl Cl - 23. (A) Cl_2 (B) aq. KOH (C) - (A) Ethylalcohol Ethyl chloride & Ethane - (B) Ethane, Ethylchloride & CH₃-CH₂-OH - (C) Propane, Propylchloride & CH₃-CH₂-CH₂-OH - (D) All the above - 24. An alkyl halide reacted with a metal cyanide to give an alkanenitrile. The metal cyanide is - - (A) AgCN - (B) KCN - (C) $Cu_2(CN)_2$ - (D) Ba(CN)₂ - **25.** Ethylthioalcohol can be obtained when ${\rm C_2H_5Br}$ reacts with - - (A) KSH - (B) NaOH - (C) K_2S - (D) Na₂S - **26.** Which one of the following reaction is known as strecker;s reaction - - (A) R X + NaI \rightarrow R I + NaX - (B) R X + $Na_2SO_3 \rightarrow R$ SO_3Na + NaX - (C) RCOOAg + $Br_2 \rightarrow R Br + AgBr + CO_2$ - (D) None of the above 27. The reaction $C_2H_5ONa + BrC_2H_5 \rightarrow C_2H_5-O-C_2H_5 + NaBr$ is - (A) Frankland reaction - (B) Wurtz reaction - (C) Williamson's synthesis - (D) Cannizzaro reaction ## Methods of Preparation of Aryl Halide - 28. Which of the following reactions can be used to obtain chlorobenzene from benzenediazonium chloride? - (a) Sandmeyer reaction - (b) Balz-Schemann reaction - (c) Rashing process - (d) Gattermann reaction - (A) a and b - (B) a, b and c - (C) a, c and d - (D) c and d - 29. The best method for the preparation of chlorobenzene is: (A) $$\langle \bigcirc \rangle$$ + $Cl_2 \xrightarrow{FeCl_3} \langle \bigcirc \rangle$ (B) $$\bigcirc$$ -OH + PCI₅ \rightarrow \bigcirc -CI + POCI₃+ HCI (C) $$\langle C \rangle$$ + CI_2 hv $\langle C \rangle$ - C (D) $$\bigcirc$$ OH + Cl₂ \xrightarrow{hv} \bigcirc -Cl - 30. Highest yield of chlorobenzene is obtained in the reaction: - (A) $C_6H_6 \xrightarrow{Cl_2}$ (B) Phenol _ - (C) $C_6H_6 \xrightarrow{Cl_2}$ - (D) All the above - **31.** C₆H₅Cl prepared by aniline with : - (A) HCI - (B) Cu₂Cl₂ - (C) Cl₂ in presnece of anhydrous AlCl₃ - (D) HNO₂ and then heated with Cu₂Cl₂ - 32. The chlorobenzene is generally obtained from a corresponding diazonium salt by reacting it with: - (A) Cu₂Cl₂ - (B) CuSO₄ - (C) Cu - (D) $Cu(NH_3)_4^{2+}$ 33. $$\underbrace{\text{CCI}_3}_{\text{1eqv.of Br}_2/\text{Fe}} A. \text{ Compound A is -}$$ # Properties of Aryl Halide - 34. An important insecticide is obtained by the action of chloral on chlorobenzene. It is: - (A) BHC - (B) Gammexene - (C) DDT - (D) Lindane - 35. $C_6H_5CH_2CI + KCN (aq.) \rightarrow X+ Y$ Compounds X and Y are: - (A) $C_6H_6 + KCI$ - (B) $C_6H_5CH_2CN + KCI$ - (C) $C_6H_5CH_3 + KCI$ - (D) None of these - 36. Chlorobenzene is: - (A) Less reactive than benzyl chloride - (B) More reactive than ethyl bromide - (C) Nearly as reactive as methyl chloride - (D) More reactive than ispropyl chloride - 37. What is the decreasing order of reactivity amongest the following compounds towards aromatic electrophilic substitution: - I. Chlorobenzne - II. Benzene - III. Anilinium chloride - IV. Toluene - (A) I > II > III > IV - **(B)** |V > |I > | > |I| - (C) II > I > III > IV - (D) III > I > II > IV - (A) DDT is a herbicide, benzene hexachloride is a fungicide - (B) Both are insecticides - (C) Both are herbicides - (D) DDT is a fungicide and benzene hexachloride is a herbicide - 39. Following equation illustrates: C₆H₅Cl + $$2 \text{NaOH} \xrightarrow{200-250^{\circ}\text{C}} \text{C}_6 \text{H}_5 \text{ONa} + \text{NaCI} + \text{H}_2 \text{O}$$ - (A) Dow's process - (B) Kolbe's process - (C) Carbylamine test - (D) Haloform reaction - 40. Replacement of CI of chlorobenzene to give phenol requires drastic condition but chlorine of 2,4-dinitrochlorobenzene is readlly replaced because: - (A) NO₂ make ring electron rich at ortho and para - (B) NO₂ withdraw e⁻ from meta position - (C) NO₂ donates e⁻ at meta position - (D) NO₂ withdraws e⁻ from ortho/para position - 41. Aryl halide is less reactive than alkyl halide towards nuclophilic substitution because: - (A) Less stable carbonium ion - (B) Due to large C-Cl bond energy - (C) Inductive effect - (D) Resonance stabilization and sp² hybridisation of C attached to halide - **42.** When phenyl magnesium bromide reacts with tbutanol, the product would be - - (A) Benzene - (B) Phenol - (C) t-butyl benzene - (D) t-butyl phenyl ether - 43. Analyse the following reaction and identify the nature of A and B $$\mathsf{B} \xrightarrow{\mathsf{HBr}} \mathsf{A}$$ - (A) Both A and B are - (B) Both A and B are (C) A is $$\bigcirc$$ 8 B is \bigcirc Br - 44. Which of the following catalysts is used in the preparation of chlorobenzene by Gattermann reaction? - (A) CuSO₄ - (B) CuCl₂ - (C) Cu₂Cl₂ - (D) Cu - 45. Which of the following catalysts is used in the preparation of chlorobenzene by Sandmeyer's reaction? - (A) CuCl₂ - (B) Cu₂Cl₂ - (C) CuSO₄ - (D) Cu - Which of the following compounds is obtained by Borodine-Hunsdiecker reaction of silver benzoate? - (A) Fluorobenzene - (B) Chlorobenzene - (C) Bromobenzene - (D) lodobenzene - Which of the following reagents is used for obtaining chlorobenzne from p-chlorophenol? - (A) Zinc dust - (B) Soda lime - (C) Sodamide - (D) Copper powder - 48. All of the following properties are exhibited by chlorobenzene, except: - (A) Almond-like faint smell (B) Volatility - (C) Influammability - (D) Nonpoisonous nature - 49. In Dow process, chlorobenzene is reacted with which of the following reagents? - [A] O_2 + HCl - [B] NaOH - [C] H₂O - [D] Na₂CO₃ - (A) A and C - (B) A and D - (C) B and C - (D) B and D - 50. Condensation of chlorobenzene and chloral hydrate is carried out in the presence of concentrated sulphuric acid for obtaining? - (A) D.D.T. - (B) Chloropicrin - (C) B.H.C - (D) Dichlorodiphenylethane # **MISCELLANEOUS QUESTIONS** Consider the following sequence of reactions. $$(A)$$ $(C_3H_6Cl_2)$ $\xrightarrow{\text{heat}}$ (A) $(C_3H_6Cl_2)$ $(C_3H_6Cl_2)$ (A) $(C_3H_6Cl_2)$ $$A \xrightarrow{\text{aq.KOH}} C$$ Th compound (A) is - - (A) CH₃CH₂CHCl₂ - (B) CH₃CCl₂CH₃ - (C) CH₃CHClCH₂Cl (D) ClCH₂CH₂CH₂Cl - A compound (X), C₄H₈Cl₂, on hydrolysis with aqueous KOH gives a product (Y) which on heating with I2 and dilute NaOH gives a yellow precipitate of iodoform. The compound (X) is - - (A) CH₃CH₂CH₂CHCl₂ - (B) CH₃CH₂CHClCH₂Cl - (C) CH₃CH₂CCI₂CH₃ - (D) CICH2CH2CH2CH2CI - Neopentyl bromide is allowed to react with sodium ethoxide in ethanol. The major substitution product formed in the reaction $$\begin{array}{c} \text{CH}_{3} \\ \text{I} \\ \text{C} - \text{CH}_{2} - \text{OC}_{2} \text{H}_{5} \\ \text{CH}_{3} \end{array}$$ (B) $$CH_3 - CH_2 - C - OC_2H_5$$ CH_3 $$\begin{array}{c} \text{CH}_3\\ \mid\\ \text{(C)} \ \text{CH}_3-\text{CH}-\text{CHCH}_3\\ \mid\\ \text{OC}_2\text{H}_5 \end{array}$$ - (D) $(CH_3)_2CHCH_2CH_2 OC_2H_5$ - 4. Which of the following reactions will not give an isocyanide - - (A) $CH_3CH_2Br + AgCN \longrightarrow$ - (B) $CH_3CH_2NH_2 + CHCl_3 + KOH \xrightarrow{heat}$ (C) $$CH_3CH_2NHC - H + POCl_3 \xrightarrow{heat}$$ - (D) $CH_3CH_2CONH_2 + P_4O_{10} \xrightarrow{heat}$ - Which of the following processes does not occur during the formation of CHCl₃ from C₂H₅OH and bleaching powder - - (A) Oxidation - (B) Chlorination - (C) Hydrolysis - (D) Reduction - Which of the following reactions is not expected to give a satisfactory yield of alkyl iodide - (A) $$CH_3CH_2OH + KI + H_3PO_4 \longrightarrow$$ (D) $$CH_3CH_2COOAg + I_2 \xrightarrow{CCI_4}$$ - 7. 2-Bromopentane is heated with potassium ethoxide in ethanol. The major product is - - (A) trans-2-pentene - (B) 2-ethoxypentane - (C) 1-pentene - (D) cis-2-pentene - An aromatic primary amine (A) is heated with another compound (B) in the presence of alcoholic KOH to give a bad-smelling compound having the formula C₆H₅NC. The compound (B) can be prepared by heating another compound (C) with chlorine and slaked lime. The compound (C) is - - (A) $C_6H_5NH_2$ - (B) C₂H₅OH - (C) CHCI₃ - (D) CH₃OCH₃ - 9. Consider the following sequence of reactions. $$C_2H_5CI \xrightarrow{KCN} X \xrightarrow{H_3O^+} Y$$ The products (X) and (Y) are, respectively - - (A) C₂H₅CN and C₂H₅CH₂NH₂ - (B) C₂H₅CN and C₂H₅CONH₂ - (C) C₂H₅NC and C₂H₅NHCH₃ - (D) C₂H₅CN and C₂H₅COOH - 10. The order of decreasing $S_N 1$ reactivities of the halides - (I) $CH_3CH_2CH_2CI$ - (II) CH₂ = CHCHCICH₃ - (III) CH₃CH₂CHCICH₃ is - - (A) I > II > HH - (B) II > I > III - (C) II > III > I - (D) III > II > I - **11.** C₂H₅Br can be obtained in the laboratory by the action of ethyl alcohol with : - (A) KBr - (B) NH₄Br - (C) Br₂ - (D) KBr and conc. H₂SO₄ - 12. Which one is an organometallic compound? - (A) C₂H₅ONa - (B) C₂H₅SNa - (C) C_2H_5MgI - (D) All of these - **13.** A grignard reagent is prepared by the action of magnesium in dry ether on : - (A) C₂H₅OH - $(B) C_2H_6$ - $(C) C_2H_5CI$ - (D) C_2H_5CN - 14. Which is the correct formula of bleaching powder? - (A) Ca(OCI)CI - (B) CaO(OCI) - (C) Ca(OCI)₂ - (D) Ca(OCI),CI - **15.** When the reaction between methyl iodide and so-dium ethoxide occurs, we get : - (A) methyl acetate - (B) ethyl methyl ketone - (C) ethyl acetate - (D) ethyl methyl ether - **16.** Heating together of sodium ethoxide and ethyl iodide will give : - (A) ethyl alcohol - (B) acetaldehyde - (C) diethyl ether - (D) acetic acid - 17. $CH_3OH \xrightarrow{Pl_3} (A) \xrightarrow{KCN} (B) \xrightarrow{Hydrolysis} (C$ The compound (C) is: - (A) CH₂OH - (B) HCOOH - (C) CH₂CHO - (D) CH₂COOH - 18. $C_2H_5Br \xrightarrow{KCN} (A) \xrightarrow{Hydrolysis} (B)$ The com- pound B(in above reaction is : - (A) ethylene chloride - (B) acetic acid - (C) propionic acid - (D) ethyl cyanide - 19. When iodoform is heated with ag powder it forms: - (A) acetylene - (B) ethylene - (C) methane - (D) ethane - **20.** When CCl₄ is boiled with hot ethanolic KOH, the product formed is KCl and : - (A) formic acid - (B) methyl alcohol - (C) formaldehyde - (D) potassium carbonate - **21.** The reaction, $R Br + NaCN \longrightarrow R C + NaBr$, is an example of : - (A) elimination reaction - (B) nucleophilic substitution - (C) electrophilic substitution - (D) oxidation reduction - 22. Which alkyl halide has maximum reactivity? - (A) CH₂CH₂Br - (B) CH₂Br - (C) CH₂CH₂CH₂Br - (D) H₃CH₂CH₂CH₃Br - 23. Decreasing order of reactivity of alkyl halide is : - (A) RI > RCI > RBr - (B) RBr > RCl > RI - (C) RI > RBr > RCI - (D) RCI > RBr > RI - 24. Butanenitrile may be prepared by heating : - (A) propyl alcohol with KCN - (B) butyl alcohol with KCN - (C) butyl chloride with KCN - (D) propyl chloride with KCN - 25. Grignard reagent adds to : - (A) >C=O - (B) $-C \equiv N$ - (C) > C = S - (D) all of these - 26. For the reaction, $$C_2H_5OH + HX \xrightarrow{ZnX_2} C_2H_5X$$ The decreasing order of reactivity of halogen acids is: - (A) HI > HCI > HBr - (B) HI > HBr > HCl - (C) HCl > HBr > HI - (D) HBr > HI > HCl - 27. Which of the following alkyl halide is hydrolysed by S_N1 mechanism? - (A) (CH₂)₂CHX - (B) CH₃CH₂X - (C) CH₃CH₂CH₂X - (D) $(CH_3)_3CX$ - 28. S_N1 reaction is favoured by: - (A) non-polar solvents - (B) bulky groups on the carbon atom attached to halogen atom - (C) small groups on the carbon atom attached to halogen atom - (D) none of the above **29.** An organic halide with formula C_EH₁₃Br on heating with alc. KOH gives two isomeric alkenes (A)and (B) with formula C₆H₁₂. On reductive ozonolysis of mixture (A) and (B), the following compounds are obtained: CH₃COCH₃, CH₃CHO, CH₃CH₂CHO and (CH₃)₂CHCHO The organic halide is : - (A) 2-bromohexane - (B) 3-bromo-2-methylpentane - (C) 2,2-bromo-2-methylpentane - (D) none of the above - **30.** $(CH_3)_2CHCI + NaI \longrightarrow (CH_3)_2CHI + NaCI$ The above reaction is known as: - (A) Finkelstein reaction (B) Stephen's reaction - - (C) Kolbe's reaction - (D) Wurtz reaction - 31. In elimination reactions, the reactivity of alkyl halides is in decreasing order: - (A) T > S > P - (B) P > S > T - (C) S > P > T - (D) none of these - 32. What happens when CCl, is treated with AgNO. solution? - (A) NO₂ will be evolvedd - (B) A white ppt. will be formed - (C) CCl₄ will dissolve in AgNO₃ solution - (D) No reaction takes place - 33. Terminal dihalides on heating with zinc and methanol, we get: - (A) alkenes - (B) cycloalkanes - (C) alkynes - (D) alkanes - 34. Tert. butyl chloride preferably undergoes hydrolysis by: - (A) S_N1 mechanism - (B) S₁2 mechanism - (C) any of (a) and (b) - (D) none of these - 35. The reaction conditions leading to the best yield of C₂H₅Cl are: - (A) C_2H_6 (excess) + $CI_2 \xrightarrow{UV \text{ light}}$ - (B) $C_2H_6 + CI_2 \xrightarrow{\text{Dark, Room temp.}}$ - (C) $C_2H_6 + CI_2(excess) \xrightarrow{UV \text{ light}}$ - (D) $C_2H_6 + CI_2 \xrightarrow{UV \text{ light}}$ - 36. Arrange the following in order of their decreasing acid strength: - (A) HCIO > HCIO₂ > HCIO₃ > HCIO₄ - (B) HCIO₄ > HCIO₃ > HCIO₂ > HCIO - (C) HCIO > HCIO₄ > HCIO₃ > HCIO₉ - (D) HCIO₄ > HCIO > HCIO₂ > HCIO₃ - 37. The order of reactivity of alkyl halides depends upon: - (A) nature of alkyl group - (B) nature of halogen atom - (C) nature of both alkyl group and halogen atoms - (D) none of the above - **38.** Compound C₄H₆Cl₂ (A) on hydrolysis gives a compound C,H,O (B) which reacts with hydroxylamine and does not give any test with Tollens' reagent. What are (A) and (B)? - (A) 1,1-Dichlorobutane and butanal - (B) 2,2-Dichlorobutane and butanal - (C) 1,1-Dichlorobutane and butan-2-one - (D) 2,2-Dichlorobutane and butan-2-one - Which one of the following compounds is stable? - (A) CH₃CH(OH)₂ - (B) (CH₃)₂CH(OH)₂ - (C) CCI₃CH(OH)₃ - (D) None of these - 40. Isobutyl magnesium bromide with dry ether and absolute alcohol gives: - (A) (CH₃)₂ CHCH₂OH and CH₃CH₂MgBr - (B) (CH₃)₂ CHCH₂CH₂CH₃ and Mg(OH)Br - (C) (CH₂)₂ CH and CH₂CH₂OMgBr - (D) $(CH_3)_3$ CH, $H_2C = CH_2$ and Mg(OH)Br - 41. Isopropyl chloride undergoes hydrolysis by: - (A) S_N1 mechanism - (B) S_N2 mechanism - (C) S_N1 and S_N2 mechanism - (D) Neither S_N1 nor S_N2 mechanism - 42. Which one of the following is most reactive towards nucleophilic substitution? - (A) $H_2C = CH CI$ - (B) C_EH_ECI - (C) $CH_3 CH = CH CI$ (D) $CICH_2 CH = CH_2$ - (A) RF > RCl > RBr > RI (B) RF > RBr > RCl > RI - (C) RCI > RBr > RF > RI (D) RI > RBr > RCI > RF - **44.** The reactivity order of halides for dehydrohalogenation is: - (A) R-F > R-CI > R-Br > R-I - (B) R-I > R-Br > R-CI > R-F - (C) R-I > R>CI > R-Br > R-F - (D) R-F > R-I > R-Br > R-CI - **45.** Identify the set of reagent and reaction conditions 'X' and 'Y' in the following set of transformations, $$CH_3 - CH_2 - CH_2Br \xrightarrow{X} Pr oduct \xrightarrow{Y} CH_3 - CH - CH_3$$ - (A) X = Dilute aqueous NaOH, 20°C - Y = HBr/acetic acid, 20°C - (B) X = Concentrated alcoholic NaOH, 80°C - Y = HBr/acetic acid, 20°C - (C) X = Dilute aqueous NaOH, 20°C - $Y = Br_2/CHCl_2$, $0^{\circ}C$ - (D) X = Concentrated alcoholic NaOH, 80°C $$Y = Br_2/CHCl_3$$, 0°C - **46.** When an alkyl halide is heated with dry Ag₂O, it produces: - (A) ester - (B) ether - (C) ketone - (D) alcohol - **47.** Among the following the most reactive towards alcoholic KOH is: - (A) CH₂CH₂Br - (B) (CH₃)₂CHBr - (C) CH₂CH₂CH₂Br - (D) CH₃COCH₂CH₂Br - **48.** The major product obtained on treatment CH₂CH₂CH(F)CH₂ with CH₂O-/CH₂OH is: - (A) CH₃CH₂CH(OCH₃)CH₃ - (B) CH₃CH = CHCH₃ - (C) $CH_2CH_2CH = CH_2$ - (D) CH₃CH₂CH₂CH₃OCH₃ - **49.** A compound (A) C₅H₁₀C₁₂ on hydrolysis gives C₅H₁₀O which reacts with NH₂OH, forms iodoform but does not give Fehling test. (A) is: **50.** The major product formed in the following reaction $$CH_3$$ $CH_3 - C - CH_2Br \xrightarrow{CH_3O^-} CH_3OH \rightarrow is:$ (A) $$CH_3 - C - CH_2OCH_3$$ (B) $CH_3 - CH - CH_2CH_3$ OCH₃ (C) $$CH_3 - C = CH_2$$ (D) $CH_3 - C = CH_3$ # **ANSWER KEY** # **TOPIC WISE MCQS** | Ques. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | Ans. | В | С | D | D | D | С | С | Α | В | D | Α | С | В | D | В | С | В | D | Α | С | | Ques. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | Ans. | D | Α | В | В | Α | В | С | С | Α | Α | D | Α | Α | С | В | Α | В | D | Α | D | | Ques. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | | | | | | | | | | | Ans. | D | Α | С | D | В | С | Α | D | D | Α | | | | | | | | | | | # MISCELLANEOUS QUESTIONS | | | | | | | | | | | | | | | | | _ | | | | | |-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----| | Ques. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | Ans. | Α | С | Α | D | С | D | Α | В | D | С | D | C | С | Α | D | С | D) | С | Α | D | | Ques. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | Ans. | В | В | C | D | D | В | D | В | В | Α | A | D | В | Α | A | В | C | D | С | O | | Ques. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | S | | 3 | 9/ | | | | | | | Ans. | С | D | D | В | В | В | D | В | Α | D | 4 | | 19 | 3 | 10 | / | 0.0 | | | | # Our **INFRASTRUCTURE** DOUBT Our You Tube Channel Ranjan Singh Chemistry Classes **HEAD OFFICE** 1/11, Vivekanand Marg, Opp. A.N. College, Boring Road, Patna-13 © **9334366815**, 7463829757 www.chemistrybyranjansingh.com Minfo@chemistrybyranjansingh.com